A BETTER SORT OF
YELP PHOTOS




PROBLEM STATEMENT

Why are the photos in many Yelp
restaurant galleries still poor
quality? App users and owners

deserve a better sort option.
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USING MACHINE LEARNING TO SORT

ORIGINAL GALLERY

SORTS HIGH
QUALITY
PHOTOS TO

SORTS POOR
QUALITY
PHOTOS TO THE
BOTTOM





https://en.m.wikipedia.org/wiki/File:Johnny-automatic-scales-of-justice.svg

METHODS
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PHOTO CRITERIA

» Focus: Subjectin focus.




PHOTO CRITERIA

» Focus: Subjectin focus.

» Exposure: Even
Label: [good]

Label: [bad]




PHOTO CRITERIA

» Focus

» Exposure
Label: [good]

» Subject

) Label: [bad]




PHOTO CRITERIA

» Focus

» Exposure
Label: [good]

» Subject

» Color Label: [bad]




PHOTO CRITERIA

» Focus
» Exposure
Label: [good]

» Subject

» Color Label: [bad]

» Pattern / Composition
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Composite "Good" Image
(Mean Values)

DATA VISUALIZATION

» Composite image for each
class (mean values)

Composite "Bad" Image
(Mean Values)




Average Good Image

Average Bad Image
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Difference Between Good and Bad Photo




Composite Good Photo Histogram

DATA VISUALIZATION
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Good Eigen Faces
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Good Photo High Eigen Value Good Photo High Eigen Value Good Photo High Eigen Value




MODELING
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CLASSIFICATION


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Training and Validation Loss

CNN IMAGE CLASSIFIER FROM SCRATCH

—— Training Loss

- \/alidation Loss

0.8 - %

MODEL 1: 76/ ACC

Batch size: 16, Image size: 256x256

0.4 A
Model: "sequential 5"
Layer (type) Output Shape Param # 0.2
rescaling 8 (Rescaling) (None, 256, 256, 3) 0
conv2d 15 (Conv2D) (None, 256, 256, 16) 448
I I 1 I I
max_pooling2d 15 (MaxPoolin (None, 128, 128, 16) 0 0 % 4 6 8
g2D)
conv2d_16 (Conv2D) (None, 128, 128, 32) 4640 L. . .
Training and Validation Accuracy
max_pooling2d 16 (MaxPoolin (None, 64, 64, 32) 0 1.0 -
conv2d 17 (Conv2D) (None, 64, 64, 64) 18496
max_pooling2d 17 (MaxPoolin (None, 32, 32, 64) 0 0.9 A1
g2D)
flatten 5 (Flatten) (None, 65536) 0
0.8 A
dense 10 (Dense) (None, 128) 8388736
dense 11 (Dense) (None, 1) 129
________________________________________________________________ 0.7 5
Total params: 8,412,449
Trainable params: 8,412,449
Non-trainable params: 0 o
0.6 - —— Training Accuracy
- Validation Accuracy

0 2 4 6 8



Training and Validation Loss

CNN IMAGE CLASSIFIER FROM SCRATCH

0.9+ —— Training Loss
- Validation Loss

MODEL 2: 827 ACC

Batch size: 16, Image size: 256x256
Adds Image Augmentation & Dropout

Model: "sequential 8"

Layer (type) Output Shape Param #

sequential 7 (Sequential) (None, 256, 256, 3) 0

rescaling 9 (Rescaling) (None, 256, 256, 3) 0

T T T 1 1 1 1 1

conv2d 18 (Conv2D) (None, 256, 256, 16) 448 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
max_pooling2d 18 (MaxPoolin (None, 128, 128, 16) 0

g2D)

conv2d_19 (Conv2D) (None, 128, 128, 32) 4640 Training and Validation Loss
max_pooling2d 19 (MaxPoolin (None, 64, 64, 32) 0 il P

42D) 0.9 — Tra!nm(::; Loss

——— Validation Loss

conv2d 20 (Conv2D) (None, 64, 64, 64) 18496

max _pooling2d 20 (MaxPoolin (None, 32, 32, 64) 0

g2D)

dropout (Dropout) (None, 32, 32, 64) 0

flatten 6 (Flatten) (None, 65536) 0

dense 12 (Dense) (None, 128) 8388736

dense_13 (Dense) (None, 1) 129
Total params: 8,412,449
Trainable params: 8,412,449
Non-trainable params: 0

0.0 2.5 5.0 s 100 425 150 175



Training and Validation Loss

—— Training Loss
- Validation Loss
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Training and Validation Accuracy

Accuracy

—— Training Accuracy
Validation Accuracy




Training and Validation Loss

—— Training Loss
— Validation Loss
—— Start Fine Tuning

Training and Validation Accuracy

Accuracy

—— Training Accuracy
Validation Accuracy




Label: good Predicted: good Label: good Predicted: good Label: bad Predicted: bad

Label: bad Predicted: bad Label: good Predicted: good
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Label: bad Predicted: bad

Label




CONCLUSIONS




TEXT

CONCLUSIONS

» More difficult to evaluate
subjective labels.

» Sometimes CNNs with transfer
learning don’t perform better
than those without.

» CNNs: are like poker.

» Try limiting down the dataset to
more specific shapes(e.g. sushi).

» Try a CNN w/ specific
architecture for color patterns.

Source


https://www.pickpik.com/casino-chips-cards-various-business-gambling-76279

RECOMMENDATIONS




TEXT

RECOMMENDATIONS

» Review platforms with user-
generated photo galleries should
consider implementing Al-based
photo-quality sorting.

» This idea has other applications
beyond review platforms; many
are already in production such as
on this website: www.pickpik.com



http://www.pickpik.com

